5 resultados para Achilles Tendon

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Calcific tendonitis of rotator cuff is observed on plainradiographs in 10% of adults, but remains asymptomatic in half thesecases. Sometimes, these calcifications induce acute flares withmassive inflammation similar to gout or CPPD crisis. Analgesics/anti-inflammatory medications are usually not sufficient to controlssymptoms in these situations. Local steroid infiltration with or withoutremoval of the calcific deposition with a needle aspiration may beuseful. A new approach could be IL-1 inhibitors. Indeed, basic calciumphosphate crystals are capable of stimulating the release of activeIL-1β in vitro. These crystals trigger IL-1β release, in an analogousmanner to MSU crystals in acute gout, suggesting that IL-1β blockademay be clinically useful.Case presentation: This report describes a 70-year old woman withacute rest pain of the right shoulder since 48 hours. On examination,we found massive limitations of active and passive movements. Thepatient evaluated, on the visual scale, her symptoms at 10/10 the nightand 5/10 the day. The radiography and showed a rounded, 8 mmcalcification in the subscapularis tendon. The ultrasound aspectrevealed a heterogeneous calcification partially non solid, surroundedby massive inflammation on Doppler. C-reactive protein anderythrocyte sedimentation rate were high (74 mg/ml, 54 mm/hour).The patient received subcutaneous injections of anakinra: 100 mgdaily for 3 days (D1-D3). We evaluated the patient in our consult at dayD1, D2, D3, D7, D16 and by phone at D70.This treatment rapidly relieved the inflammatory symptoms (within afew hours with no relapse). The mobility of the shoulder, the biologicsparameters improved and the size of the calcification as well thedegree of inflammation regressed on ultrasound after 3 days.Conclusion: This is the first report of a woman with an acute flareinduced by calcific tendonitis who received anakinra. IL-1 inhibitionmay be a therapeutic target in calcific tendonitis. To analyse thisresponse more precisely and elaborate definitive conclusions, aprospective pilot study is on-going in our ambulatory institute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The World Health Organization (WHO) criteria for the diagnosis of osteoporosis are mainly applicable for dual X-ray absorptiometry (DXA) measurements at the spine and hip levels. There is a growing demand for cheaper devices, free of ionizing radiation such as promising quantitative ultrasound (QUS). In common with many other countries, QUS measurements are increasingly used in Switzerland without adequate clinical guidelines. The T-score approach developed for DXA cannot be applied to QUS, although well-conducted prospective studies have shown that ultrasound could be a valuable predictor of fracture risk. As a consequence, an expert committee named the Swiss Quality Assurance Project (SQAP, for which the main mission is the establishment of quality assurance procedures for DXA and QUS in Switzerland) was mandated by the Swiss Association Against Osteoporosis (ASCO) in 2000 to propose operational clinical recommendations for the use of QUS in the management of osteoporosis for two QUS devices sold in Switzerland. Device-specific weighted "T-score" based on the risk of osteoporotic hip fractures as well as on the prediction of DXA osteoporosis at the hip, according to the WHO definition of osteoporosis, were calculated for the Achilles (Lunar, General Electric, Madison, Wis.) and Sahara (Hologic, Waltham, Mass.) ultrasound devices. Several studies (totaling a few thousand subjects) were used to calculate age-adjusted odd ratios (OR) and area under the receiver operating curve (AUC) for the prediction of osteoporotic fracture (taking into account a weighting score depending on the design of the study involved in the calculation). The ORs were 2.4 (1.9-3.2) and AUC 0.72 (0.66-0.77), respectively, for the Achilles, and 2.3 (1.7-3.1) and 0.75 (0.68-0.82), respectively, for the Sahara device. To translate risk estimates into thresholds for clinical application, 90% sensitivity was used to define low fracture and low osteoporosis risk, and a specificity of 80% was used to define subjects as being at high risk of fracture or having osteoporosis at the hip. From the combination of the fracture model with the hip DXA osteoporotic model, we found a T-score threshold of -1.2 and -2.5 for the stiffness (Achilles) determining, respectively, the low- and high-risk subjects. Similarly, we found a T-score at -1.0 and -2.2 for the QUI index (Sahara). Then a screening strategy combining QUS, DXA, and clinical factors for the identification of women needing treatment was proposed. The application of this approach will help to minimize the inappropriate use of QUS from which the whole field currently suffers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: First, to report ECU subsheath's normal MRI appearance and the findings in athletic injuries. Second, to determine the best MRI sequence for diagnosis. Methods and materials: Sixteen patients (13 males, 3 females, mean age 30.3 years) with ECU subsheath's athletic injuries sustained between January 2003 and June 2009 were retrospectively reviewed. Wrist MRI studies were performed on 1.5-T units and consisted of at least transverse T1 and STIR sequences in pronation, and FS Gd T1 in pronation and supination. Two radiologists assessed the following items, in consensus: injury type (A to C according to Inoue), ECU tendon stability, and associated lesions (ulnar head oedema, extensor retinaculum injury, ECU tendinosis and tenosynovitis). Then, each reader independently rated the sequences' diagnostic value: 0 = questionable, 1 = suggestive, 2 = certain. Follow-up studies were present in 8 patients. ECU subsheath's normal visibility (medial, central and lateral parts) was retrospectively evaluated in 30 consecutive control MRI studies. Results: FS Gd T1 sequences in supination (1.63) and pronation (1.59) were the most valuable for diagnosis, compared to STIR (1.22) and T1 (1). The study group included 9 type A, 1 type B and 6 type C injuries. There were trends towards diminution in pouches' size, signal intensity and enhancement in follow-up studies, along with tendon stabilization within the ulnar groove. In control studies, ECU subsheath's visibility in medial, central and lateral parts were noted in 66.7-80%, 63.3-80% and 30-50% respectively. Conclusion: ECU subsheath's athletic injuries are visible on 1.5-T MRI studies. FS Gd T1 sequences in supination and pronation are the most valuable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although tissue engineering and cell therapies are becoming realistic approaches for medical therapeutics, it is likely that musculoskeletal applications will be among the first to benefit on a large scale. Cell sources for tissue engineering and cell therapies for tendon pathologies are reviewed with an emphasis on small defect tendon injuries as seen in the hand which could adapt well to injectable cell administration. Specifically, cell sources including tenocytes, tendon sheath fibroblasts, bone marrow or adipose-derived stem cells, amniotic cells, placenta cells and platelet-derivatives have been proposed to enhance tendon regeneration. The associated advantages and disadvantages for these different strategies will be discussed and evolving regulatory requirements for cellular therapies will also be addressed. Human progenitor tenocytes, along with their clinical cell banking potential, will be presented as an alternative cell source solution. Similar cell banking techniques have already been described with other progenitor cell types in the 1950's for vaccine production, and these "old" cell types incite potentially interesting therapeutic options that could be improved with modern innovation for tendon regeneration and repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tendon injuries are very frequent and affect a wide and heterogeneous population. Unfortunately, the healing process is long with outcomes that are not often satisfactory due to fibrotic tissue appearance, which leads to scar and adhesion development. Tissue engineering and cell therapies emerge as interesting alternatives to classical treatments. In this study, we evaluated human fetal progenitor tenocytes (hFPTs) as a potential cell source for treatment of tendon afflictions, as fetal cells are known to promote healing in a scarless regenerative process. hFPTs presented a rapid and stable growth up to passage 9, allowing to create a large cell bank for off-the-shelf availability. hFPTs showed a strong tenogenic phenotype with an excellent stability, even when placed in conditions normally inducing cells to differentiate. The karyotype also indicated a good stability up to passage 12, which is far beyond that necessary for clinical application (passage 6). When placed in coculture, hFPTs had the capacity to stimulate human adult tenocytes (hATs), which are responsible for the deposition of a new extracellular matrix during tendon healing. Finally, it was possible to distribute cells in porous or gel scaffolds with an excellent survival, thus permitting a large variety of applications (from simple injections to grafts acting as filling material). All of these results are encouraging in the development of an off-the-shelf cell source capable of stimulating tendon regeneration for the treatment of tendon injuries.